E3 ubiquitin ligase RNF2 interacts with the S6' proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6'.

نویسندگان

  • Sun-Joo Lee
  • Dongwon Choi
  • Hyangshuk Rhim
  • Seongman Kang
چکیده

We reported previously that the human RNF2 (RING finger protein 2) protein is an E3 ubiquitin ligase that interacts with the human ubiquitin-conjugating enzyme Hip-2/hE2-25K. In the present study, we show that RNF2 interacts with S6' ATPase, a subunit of the proteasomal 19 S regulatory complex. S6' interacts with RNF2 through its N-terminal RING domain, and RNF2 interacts with S6' through its C-terminal region. Interestingly, the RNF2-S6' interaction increases the ATP hydrolysis activity of the S6' protein. Moreover, S6' ATPase activity is highly increased in the presence of ubiquitinated proteins. The present study suggests that the E3 ubiquitin ligase RNF2 might have a dual function: facilitating the ubiquitination of its target substrates and recruiting the substrates to the proteasome. Furthermore, ATP hydrolysis in the E3/proteasome complex might act as an important signal for the protein degradation pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aggregated and monomeric alpha-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function.

The accumulation of aggregated alpha-synuclein is thought to contribute to the pathophysiology of Parkinson's disease, but the mechanism of toxicity is poorly understood. Recent studies suggest that aggregated proteins cause toxicity by inhibiting the ubiquitin-dependent proteasomal system. In the present study, we explore how alpha-synuclein interacts with the proteasome. The proteasome exists...

متن کامل

Modulation of hippocampal synapse maturation by activity-regulated E3 ligase via non-canonical pathway

Development of functional synapses is crucial for the transmission and storage of information in the brain. Post establishment of the initial synaptic contact, synapses are stabilized through neuronal activity-induced signals. Emerging studies have implicated ubiquitination; a reversible posttranslational modification, as a key regulatory switch that modulates synapse development through protea...

متن کامل

RNF2 interacts with the linker region of the human P-glycoprotein.

The human P-glycoprotein (Pgp) is a drug-efflux pump responsible for innate or acquired multidrug resistance in many cancers. Pgp contains a unique approximately 75 amino acid long linker region in its middle, which is critically important for its drug transport and ATPase functions. To identify cellular proteins that bind to this linker region and modulate Pgp function, a yeast two-hybrid anal...

متن کامل

Ubiquitin Ligase NEDD4 Regulates PPARγ Stability and Adipocyte Differentiation in 3T3-L1 Cells

Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor which controls lipid and glucose metabolism. It is also the master regulator of adipogenesis. In adipocytes, ligand-dependent PPARγ activation is associated with proteasomal degradation; therefore, regulation of PPARγ degradation may modulate its transcriptional activity. Here, we show that neural precur...

متن کامل

Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function.

Angelman syndrome (AS) is a neurogenetic disorder caused by deficiency of maternally expressed ubiquitin-protein ligase E3A (UBE3A), an E3 ligase that targets specific proteins for proteasomal degradation. Although motor function impairment occurs in all patients with AS, very little research has been done to understand and treat it. The present study focuses on Ube3A deficiency-induced alterat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 389 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005